

1

Exact and Approximate Inference Methods for Bayesian
Networks

Zachary T. Johnson

Undergraduate Student, Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa, USA

ztj1@iastate.edu

ABSTRACT

This document highlights some of the methods of exact and approximate probabilistic inference in Bayesian

Networks. I will begin by giving an overview of the purpose of Bayesian Networks, describing their numerical and

topological semantics, and defining some important terms necessary for understanding later topics. I will then

describe some of the foundational methods of probabilistic inference in Bayesian Networks, beginning with exact
inference and continuing on to approximate inference. My descriptions will include their computational

complexities as well as the primary cases in which they are useful. My information will be drawn largely from [1]
and [3]. I have also added some additional information on Markov chain properties and semantics.

Keywords: Bayesian Networks, Inference Methods, Markov Chain Monte Carlo

I. Introduction

Uncertain environments present many problems

when it comes to knowledge representation. In these

domains, propositional and first order logic can no

longer represent relationships without exhaustively

describing the relationships between every variable

in the universe. To avoid this problem, we introduce

the concept of “degree of belief”. Using probability

theory, we can determine our degree of belief and

summarize it with a value between 0 and 1 that

represents how strongly we believe a proposition.

Building upon this, we can summarize the

conditional relationships between multiple variables

using a joint probability distribution. However, in

complex problems with many variables, calculating

the full joint distribution can become

computationally intense; the size of the table grows

exponentially with the number of variables.

One way to reduce the complexity is to take

advantage of independence properties. If one

variable is independent of another, we do not need to

include their conditional probabilities in the joint

distribution. To avoid computing and storing these

unnecessary values, we can instead divide the set of

variables into independent subsets, and compute

only the conditional probability tables. Using

conditional independence, we can break the tables

down even further.

With this new information comes the need for a way

to succinctly represent the dependencies among

variables. In response to this problem, we have

Bayesian Networks. Bayesian Networks provide a

way to represent complex probabilistic relationships

in an intuitive way. However, for reasons that I will

describe later, there are many issues associated with

probabilistic inference in Bayesian Networks,

including computational complexity and mixing rate

limitations. To combat these issues, many different

approaches have been developed.

In this paper, I will describe some methods of

computing and approximating posterior

probabilities using Bayesian Networks, as well as

the benefits and caveats of each of these methods.

For exact inference, I will cover enumeration,

variable elimination, and clustering. For

approximate inference, I will cover rejection

sampling and importance sampling, as well as

Markov Chain Monte Carlo methods such as Gibbs

and Metropolis-Hastings sampling.

II. Bayesian Network Semantics

In this section I will describe the numerical and

topological semantics of Bayesian Networks, as well

as some background information on conditional

independence relationships.

 2

A. Topological

A Bayesian Network is a directed acyclic graph-

based data structure that includes nodes

corresponding to variables and directed edges

corresponding to dependence relationships. Each

node has an associated conditional probability table

describing its probability given each possible value

combination of its “parents”, which are all the nodes

which have an outgoing edge pointed to that node.

An important topological aspect of Bayesian

Networks is the condition that a node is independent

of its non-descendants given its parents [1].

Therefore, the parents of a node should be all the

nodes with a direct effect on its probability.

B. Numerical

A Bayesian Network is only correctly structured if it

adheres to the following equation, given in [1]:

𝑷(𝑋𝑖 | 𝑋𝑖−1, … , 𝑋1 = 𝑷(𝑋𝑖 | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

where Parents(Xi))  {Xi−1,…,X1}, the last condition

being satisfied by the nodes being in topological

order. This equation mathematically reiterates my

earlier statement that each node is conditionally

independent of its non-descendants given its parents.

C. Conditional Independence

Another very important aspect of Bayesian

Networks is given in [1]: a variable is conditionally

independent of all other variables in a network given

its Markov blanket. The Markov blanket includes a

nodes parents, children, and children’s parents. A

test used in [1] is to check whether a set of nodes Z

“d-separates” two sets X and Y. The test is as follows:

convert all edges to undirected edges, add undirected

edges between parent nodes that share a child, and

check if there are any paths between X and Y that do

not pass through Z. If there are not, then Z d-
separates X and Y, and X is independent of Y given

Z.

III. Exact Inference

Exact inference in Bayesian Networks is the

computation of the exact value of a posterior

distribution of a set of query variables given the

observed values of some evidence variables. This

section will describe some of the algorithms that

accomplish exact inference in Bayesian Networks:

enumeration and variable elimination.

A. Enumeration

The simplest algorithm for computing the posterior

distribution is enumeration, or simply the summing

of the values from the full joint distribution. This

computation can be done using the equation from

[2]:

𝑷(𝑋 | 𝒆) = α𝑷(𝑋, 𝒆) = 𝛼∑𝑷(𝑋, 𝒆, 𝒚)

𝒚

where the summation is over all possible values y of
the unobserved variables. Done naively, this

computation has complexity O(n2n), but it can be

reduced to O(2n) by taking advantage of the structure

of the network and moving some computations

outside of the summation loop. Nevertheless, this is

still very computationally inefficient. Many

computations are calculated multiple times. The next

method will take advantage of these repeated

calculations to improve efficiency.

B. Variable Elimination

Variable elimination is a type of dynamic

programming algorithm that stores intermediate

results to avoid repeating computations. To

understand this algorithm, we will first need to

understand some terms.

According to [1], a factor is a matrix indexed by the

values of its argument variables. These matrices are

used to store conditional probabilities of a value of a

variable given the value of one or more other

variables (the arguments).

The pointwise product, represented by “×”, is

described by [1] as yielding a new factor whose

variables are the union of the variables of the

operand, and whose entries are given by the product

of the corresponding elements of the operands.

The last operation, called “summing out”, involves

iterating through the values of an argument variable

and summing the table entries for that variable, thus

creating a new factor that is no longer dependent on

that variable.

Using these three operations, here is how the

algorithm works:

 3

1) Variables are ordered “right-to-left”, i.e.

variables that were on the far right of the

expression used in enumeration will be

processed first, while variables that were on the

left will be processed last.

2) For each variable in the new variable order, a

factor is made, using the variable and all the

observed evidence, and added to the list of

factors.

3) If the variable is a hidden variable, i.e. not a

query variable or evidence variable, sum out all

the factors.

4) Once the loop is complete, take the pointwise

product of all the factors and normalize the

result.

While variable elimination does not improve the

worst-case runtime of exact inference, it performs

about 1,000 times faster than enumeration when

reverse topological ordering of variables is used [1].

C. Special Cases
For a specific type of tree, called a polytree, in

which there are one or zero undirected paths between

any two nodes, time complexity of variable

elimination is linear in the number of conditional

probability table entries. However, for multiply

connected networks, exact inference has exponential

time and space complexity in the worst case. In fact,

in [1], it is shown that Bayesian Network exact

inference is #P-complete, or strictly harder than NP-

complete problems.

IV. Approximate Inference

Approximate inference methods in Bayesian

Networks estimate the true value of a posterior

probability distribution. These methods are Monte

Carlo algorithms, which estimate the answer based

on samples, and whose accuracy will improve as

more samples are taken. In this section, I will cover

rejection sampling and importance sampling, as well

as some Markov chain-based methods: Gibbs

sampling and Metropolis-Hastings sampling.

A. Direct Sampling
The most basic idea of approximation is to take

samples from a known distribution and calculate

what proportion of the samples taken satisfy the

query. We can do this by sampling:

𝑷(𝑋𝑖 | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

for each variable (in topological order) and storing

the resulting values of each sample in a vector. If we

do this many times, we can approximate the

probability of a given combination of variables by

taking the number of occurrences of that

combination and dividing it by the total number of

samples.

This approach on its own is quite limited, because it

does not take into account any evidence variables,

which means we are unable to compute posterior

probabilities.

B. Rejection Sampling
Rejection sampling is essentially an extension of

direct sampling that allows us to estimate

conditional probabilities given some evidence

variables. The process of rejection sampling is fairly

simple. First, we use direct sampling to generate

some samples, and then we remove all samples that

don’t match the evidence. We can then divide the

number of samples that match each value of our

query variable by the total number of samples that

match the evidence, and that will give us our

posterior distribution. The standard deviation of the

error in probabilities will be proportional to 1/√𝑛,

where n is the number of samples that matched the

evidence. This implies that the estimated probability

will converge to the actual probability as n increases

to infinity.

The main problem with this approach is how long it

takes to converge. As the number of evidence

variables increases, the number of samples that

match the evidence decreases. In fact, the number of

accepted samples decreases exponentially with the

number of evidence variables. For this reason,

convergence is very slow, and many samples must

be generated.

C. Importance Sampling
Importance sampling is based around sampling a

distribution Q that is not the true distribution

(because the true distribution is hard to sample) and

weighting the samples according to some correction

factor (weight) P(x)/Q(x). The formula for sampling

from Q and applying the correction factor is this [1]:

𝑃̂(𝒛 | 𝒆) =
𝑁𝑄(𝒛)

𝑁

𝑃(𝒛 | 𝒆)

𝑄(𝒛)

 4

≈ 𝑄(𝒛)
𝑃(𝒛 | 𝒆)

𝑄(𝒛)
= 𝑃(𝒛 | 𝒆)

where Z is the nonevidence variables and 𝑁𝑄(𝒛) is

the number of samples from Q with Z=z. This

equation shows that the estimate converges to the

true value regardless of the sampling distribution.

However, choosing a good sampling distribution

will result in faster convergence, so we want to

choose one that is as similar as possible to the true

distribution.

One common approach is likelihood weighting,

where the sampling distribution QWS shown below is

used [1]:

𝑄𝑊𝑆(𝒛) = ∏𝑃(𝑧𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑍𝑖)

𝑙

𝑖=1

where Z = {Z1, …, Zl} is the nonevidence variables.

The general formula for the weight in importance

sampling is shown below [1]:

𝑤(𝒛) =
𝑃(𝒛 | 𝒆)

𝑄𝑊𝑆(𝒛)
= 𝛼

𝑃(𝒛, 𝒆)

𝑄𝑊𝑆(𝒛)

Where the normalization constant 𝛼 is 1/P(e) and is

the same for all samples. Since z and e together are

all the variables in the network, we can expand this

equation to [1]:

𝑤(𝒛) = 𝛼
𝑃(𝒛, 𝒆)

𝑄𝑊𝑆(𝒛)

= 𝛼
∏ 𝑃(𝑧𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑍𝑖)∏ 𝑃(𝑒𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐸𝑖)

𝑚
𝑖=1

𝑙
𝑖=1

∏ 𝑃(𝑧𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑍𝑖)
𝑙
𝑖=1

= 𝛼∏𝑃(𝑒𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐸𝑖)

𝑚

𝑖=1

Therefore, the weight is equal to the product of the

probabilities of the evidence variables given their

parents.

D. Markov Chains
The following approximation methods are largely

based on Markov chains, so I will use this section

to explain what a Markov chain is.

A Markov chain is a state machine in which state

transitions are dependent on a probability

distribution stored in a transition matrix. The

transition matrix, which I will refer to as k, defines

the probability of transitioning from one state to

another. The value k(x→x’) is the probability of

transitioning from state x to state x’. The transition

matrix is a stochastic matrix, in which the

probabilities in each row add up to one. Intuitively,

this makes sense, because the row is selected by the

state currently occupied (x), while the column

corresponds to the state being transitioned to (x’).

Markov chains also have a vector x(0) denoting the

initial state. Markov chains are also memoryless

because the probability of transitioning to the next

state is dependent only on the current state; there is

no memory of previous states retained.

Another term we must define is ergodic; if a

transition matrix is ergodic, there exists some point

in time such that, for all pairs of states x, x’ in the

chain, if the initial state was x, after the time point

there will always be a probability greater than 0 of

being in state x’. Basically, every state can be

reached from every other state, although maybe not

in a single state transition.

We will also consider a distribution 𝜋𝑡(𝒙), which

represents the probability of the system being in state

x at time t. Given this, the system has reached its

stationary distribution when 𝜋𝑡(𝒙) = 𝜋𝑡+1(𝒙). If

the transition matrix is ergodic, there is exactly one

𝜋𝑡(𝒙) that satisfies this condition.

The last Markov chains concept we need to

introduce is detailed balance. The transition matrix

is in detailed balance with 𝜋𝑡(𝒙) when [1]:

𝜋(𝒙)𝑘(𝒙 ⟶ 𝒙′) = 𝜋(𝒙′)𝑘(𝒙′ ⟶ 𝒙)

The following methods of approximation are

Markov Chain Monte Carlo (MCMC) algorithms,

which means instead of collecting every sample

from scratch, we will instead generate each new

sample by making some random change to the

current sample.

E. Gibbs Sampling
Gibbs sampling is the first MCMC algorithm we will

explore. This method starts with a random state and

then randomly samples a value for a randomly

chosen nonevidence variable in the network Xi. The

variable to be sampled is chosen based on a

probability distribution 𝜌(i).

 5

As we know, a variable Xi is independent of all other

variables given its Markov blanket. Since all other

variables are fixed, we can say that Xi is sampled

conditioned on its Markov blanket. The distribution

of this is given by [1]:

𝑃(𝑥𝑖 | 𝑚𝑏(𝑥𝑖))

= 𝛼𝑃(𝑥𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) ∏ 𝑃(𝑦𝑗 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑌𝑗))

𝑌𝑗∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑋𝑖)

This means that each value of 𝑋𝑖 is calculated by the

product of the probability of its children and the

probability of 𝑥𝑖 conditioned by its parents.

The most important property of Gibbs sampling is
that, due to the way states are changed, the stationary

distribution of the sampling process is equivalent to

the posterior distribution of the nonevidence

variables given the evidence [1]. There are three

cases we need to discuss when considering this claim

[1]:

1) The states x and x’ differ in two or more

variables. In this case, k(x→x’) = 0, because

Gibbs sampling changes no more than one

variable at a time.

2) The states differ in exactly one variable Xi that

changes value from xi to xi’. The probability of

this is:

k(𝐱→𝐱’)
= 𝑘((𝑥𝑖 , 𝒙𝒊̅) ⟶ (𝑥𝑖

′, 𝒙𝒊̅))

= 𝜌(𝑖)𝑃(𝑥𝑖
′ | 𝒙𝒊̅)

where 𝑿𝒊̅̅ ̅ is all other variables except the

evidence variables.

3) The states are the same. Any variable could be

chosen, but the value sampled must be the same
as before. The probability of this occurrence is:

k(𝐱→𝐱)

=∑𝜌(𝑖)𝑘((𝑥𝑖 , 𝒙𝒊̅) ⟶ (𝑥𝑖 , 𝒙𝒊̅))

𝑖

=∑𝜌(𝑖)𝑃(𝑥𝑖 | 𝒙𝒊)

𝑖

Gibbs sampling also satisfies detailed balance with

𝜋 = 𝑃(𝒙 | 𝒆). For the first and third cases above,

detailed balance is satisfied trivially, so we will only

look at the second here:

𝜋(𝒙)𝑘(𝒙 ⟶ 𝒙′)
= 𝑃(𝒙 | 𝒆)𝜌(𝑖)𝑃(𝑥𝑖

′ | 𝒙𝒊̅, 𝐞)
= 𝜌(𝑖)𝑃(𝑥𝑖 , 𝒙𝒊̅ | 𝐞)𝑃(𝑥𝑖

′ | 𝒙𝒊̅, 𝐞)
= 𝜌(𝑖)𝑃(𝑥𝑖 | 𝒙𝒊̅, 𝐞)𝑃(𝒙𝒊̅ | 𝐞)𝑃(𝑥𝑖

′ | 𝒙𝒊̅, 𝐞)
= 𝜌(𝑖)𝑃(𝑥𝑖 | 𝒙𝒊̅, 𝐞)𝑃(𝑥𝑖 ′, 𝒙𝒊̅ | 𝐞)
= 𝜋(𝒙′)𝑘(𝒙′ ⟶ 𝒙)

Lastly, provided that the conditional probability

tables do not contain probabilities of 0 or 1, both the

conditions of ergodicity are met. Therefore, the

Markov chain will eventually converge to the

stationary distribution, which is equivalent to the

true posterior distribution.

One major benefit of Gibbs sampling is that the

complexity of generating samples is independent of

network size, and instead is dependent on the

number of children of Xi and its range [1]. Another

benefit is that it will outperform likelihood

weighting when evidence is downstream, because

the evidence variables remain fixed and will be

considered even if they are downstream.

Gibbs sampling can encounter limitations, however,

in certain network structures. There are certain cases

in which not all variables can be reached by only

changing one variable at a time. In this case, Gibbs

sampling may never converge to the true posterior

distribution. Similarly, there may be cases in which

all states can be reached by Gibbs sampling, but the

probability of crossing certain boundaries is very

low, hindering the mixing rate, or rate of

convergence. Block sampling, sampling multiple

variables simultaneously, can help solve this

problem. Metropolis-Hastings sampling, in the next

section, also provides a solution.

F. Metropolis-Hastings Sampling
Metropolis-Hastings, similar to Gibbs sampling,

operates with the goal of converging to 𝜋 in order to

sample the true posterior distribution. However,

there are a few key differences.

Metropolis-Hastings has a two-step sampling

process. First, a new state x’ is sampled from a

proposal distribution q(x’ | x). Next, the proposed

state is accepted based on an acceptance

probability [1]:

 6

 𝑎(𝒙′| 𝒙) = min (1,
𝜋(𝒙′)𝑞(𝒙 | 𝒙′)

𝜋(𝒙)𝑞(𝒙′| 𝒙)
)

If the proposal is rejected, the state remains at x.

Besides the added acceptance probability,

Metropolis-Hastings also has more flexibility in its

proposal distribution. For example, the proposal

distribution may include a small probability of

generating a new state from scratch using

importance sampling. This type of proposal

distribution offers a solution to the mixing rate

limitations of Gibbs sampling, but still maintains the

benefits of the Markov chain-based methodology.

An important piece of Metropolis-Hastings is that it

is guaranteed to converge to the correct stationary

distribution, given that the transition kernel is

ergodic [1]. To prove this, we will once again only

focus on the case where x transitions to x’, as the

other two cases are trivial. The probability of this

transition is [1]:

𝑘(𝒙 → 𝒙′) = 𝑞(𝒙′| 𝒙)𝑎(𝒙′| 𝒙)

To prove detailed balance, we show that:

𝜋(𝒙)𝑞(𝒙′| 𝒙)𝑎(𝒙′| 𝒙)

= 𝜋(𝒙)𝑞(𝒙′| 𝒙)min (1,
𝜋(𝒙′)𝑞(𝒙 | 𝒙′)

𝜋(𝒙)𝑞(𝒙′| 𝒙)
)

= min (𝜋(𝒙)𝑞(𝒙′| 𝒙), 𝜋(𝒙′)𝑞(𝒙 | 𝒙′))

= 𝜋(𝒙′)𝑞(𝒙 | 𝒙′)min (
𝜋(𝒙)𝑞(𝒙′| 𝒙)

𝜋(𝒙′)𝑞(𝒙 | 𝒙′)
, 1)

= 𝜋(𝒙′)𝑞(𝒙 | 𝒙′)𝑎(𝒙 | 𝒙′)

A notable property of Metropolis-Hastings is the

presence of 𝜋(𝒙′)/𝜋(𝒙) in the acceptance

probability, meaning that if a proposed state is more

likely than the current state, it will be accepted. In

[3], Tierney highlights that Hastings [4] and Barker

[6] explored alternative forms of the acceptance

probability, but Peskun [5] later showed that this

form is optimal, mostly due to it being less likely to

reject candidate states.

Tierney [3] also describes some examples of kernels

that can be used in Metropolis-Hastings for

estimating posterior distributions, which I will

describe below.

G. Random Walk Chains
Random walk chains feature a proposal distribution

q that samples Z from a density f of a Lebesgue

measure 𝑬 = ℝ𝑘, μ and then generates the new

state x’ by adding Z to the current state x [3]. Thus,

we will have the new state x’ = x + Z. Intuitively,

this means the new state x’ will be a step in some

random direction in k-dimensional space, sampled

from E. Common distributions that Z may be

drawn from include a uniform distribution on a

disk, a normal distribution, or a multivariate t

distribution. The step size can be defined by a

constant c, which Tierney suggests could

reasonably be 1 or ½, and Graves [7] offers an

automated solution to.

H. Independence Chains
Independence chains use a proposal distribution

that samples candidate states from a fixed density f.
In other words, q(x’ | x) = f(x’). The acceptance

probability 𝑎(𝒙′| 𝒙) is written as [3]:

𝑎(𝒙′| 𝒙) = min (1,
𝑤(𝑦)

𝑤(𝑥)
)

This method is very similar to importance sampling

because candidate states with low weights are less

likely to be accepted, while those with high weights

are likely to be accepted; the process will often

remain in these states for multiple steps at a time. If

a state has too high a weight value, the process may

stay there for too long, so it is important to choose

an f that is as close to constant as possible. When f
is constant, candidate states are never rejected, and

the samples are drawn from  [3].

I. Rejection Sampling Chains
As a special case of independence chains, we can

use rejection sampling to sample from f [3]. To

accomplish this, we use a density function h and

constant c such that 𝜋(𝒙) ≤ 𝑐ℎ(𝒙) for all x, i.e. 𝑐ℎ

“dominates” f for all x. However, it is difficult to

choose c that is large enough to dominate f without

making it so large that the algorithm is inefficient.

Fortunately, the rejection scheme provides a

solution. We can define the acceptance probability

as:

 7

𝑎(𝒙′|𝒙) =

{

1, 𝒙 ∈ 𝐶
𝑐ℎ(𝒙)

𝜋(𝒙)
, 𝒙 ∉ 𝐶, 𝒙′ ∈ 𝐶

min(1,
𝜋(𝒙′)ℎ(𝒙)

𝜋(𝒙)ℎ(𝒙′)
) , 𝒙 ∉ 𝐶, 𝒙′ ∉ 𝐶

where C = {x: 𝜋(𝒙) ≤ 𝑐ℎ(𝒙)}. With this acceptance

probability, candidate states will occasionally be

rejected when 𝒙 ∉ 𝐶, compensating for the deficiency

at x.

J. Autoregressive Chains
Autoregressive chains are a sort of hybrid between
random walks and independence chains. In this

method, we generate new states by [3]:

𝒙’ = 𝑎 + 𝑏(𝒙 – 𝑎) + 𝒁

where a is a fixed vector and b is a real constant or

fixed k  k matrix. If b = 1, this reduces to the random

walk kernel. If a = 0 and b = 0, it reduces to an

independence kernel. If 0 < b < 1, the current state is

shrunk toward a before the increment Z is added. If

b = -1, the current state is reflected about a before

the increment Z is added [3].

V. Conclusion

Bayesian Networks offer an elegant representation of

uncertain domains. However, performing

probabilistic inference in these networks is still very

expensive, requiring us to be clever in how we

compute our posterior distribution. There are a

multitude of methods available for solving this

problem, only a few of which I have listed in this

paper. As we have seen, each method has its own

strengths and weaknesses.

Enumeration and variable elimination can give us

the exact value of the posterior distribution, but in

many cases are not practical due to their large

computational expense.

Rejection sampling often fails due to the challenge

of obtaining samples that match the evidence, but

importance sampling improves upon this by instead

weighting samples based on their usefulness.

Markov Chain Monte Carlo methods are likely the

most applicable. Gibbs sampling improves upon

importance sampling by including downstream

evidence in calculations. Metropolis-Hastings

improves upon Gibbs by allowing great flexibility in

the choice of kernel, opening the door to methods

that improve the mixing rate significantly. This

flexibility of Metropolis-Hastings is demonstrated in

the later sections describing random walks,

independence chains, rejection sampling chains, and

autoregressive chains.

Many challenges in the area of probabilistic

inference, of course, remain open, but these methods

are a foundation for many other methods that have

and will continue to be developed to solve these

problems.

VI.References

[1] S. J. Russell and P. Norvig, “Probabilistic

Reasoning,” in Artificial intelligence: A Modern

Approach, 4th ed., Hoboken, NJ: Pearson, 2021.

[2] S. J. Russell and P. Norvig, “Quantifying

Uncertainty,” in Artificial intelligence: A Modern

Approach, 4th ed., Hoboken, NJ: Pearson, 2021.

[3] L. Tierney, “Markov Chains for Exploring Posterior

Distributions,” The Annals of Statistics, vol. 22, no.

4, pp. 1701–1728, 1994.

[4] W. K. Hastings, “Monte Carlo Sampling Methods

Using Markov Chains and Their Applications,”

Biometrika, vol. 57, pp. 97–109, Apr. 1970.

[5] P. H. Peskun, “Optimum Monte-Carlo sampling

using Markov chains,” Biometrika, vol. 60, no. 3,

pp. 607–612, Dec. 1973.

[6] A. A. Barker, “Monte Carlo Calculations of the

Radial Distribution Functions for a Proton-Electron

Plasma ,” Australian Journal of Physics, vol. 18, pp.

119–133, Apr. 1965.

[7] T. L. Graves, “Automatic Step Size Selection in

Random Walk Metropolis Algorithms,” 2011.

