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ABSTRACT 
 

This document highlights some of the methods of exact and approximate probabilistic inference in Bayesian 

Networks. I will begin by giving an overview of the purpose of Bayesian Networks, describing their numerical and 

topological semantics, and defining some important terms necessary for understanding later topics. I will then 

describe some of the foundational methods of probabilistic inference in Bayesian Networks, beginning with exact 
inference and continuing on to approximate inference. My descriptions will include their computational 

complexities as well as the primary cases in which they are useful. My information will be drawn largely from [1] 
and [3]. I have also added some additional information on Markov chain properties and semantics. 
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I. Introduction 

 

Uncertain environments present many problems 

when it comes to knowledge representation. In these 

domains, propositional and first order logic can no 

longer represent relationships without exhaustively 

describing the relationships between every variable 

in the universe. To avoid this problem, we introduce 

the concept of “degree of belief”. Using probability 

theory, we can determine our degree of belief and 

summarize it with a value between 0 and 1 that 

represents how strongly we believe a proposition.  

 

Building upon this, we can summarize the 

conditional relationships between multiple variables 

using a joint probability distribution. However, in 

complex problems with many variables, calculating 

the full joint distribution can become 

computationally intense; the size of the table grows 

exponentially with the number of variables. 

  

One way to reduce the complexity is to take 

advantage of independence properties. If one 

variable is independent of another, we do not need to 

include their conditional probabilities in the joint 

distribution. To avoid computing and storing these 

unnecessary values, we can instead divide the set of 

variables into independent subsets, and compute 

only the conditional probability tables. Using 

conditional independence, we can break the tables 

down even further. 

 

With this new information comes the need for a way 

to succinctly represent the dependencies among 

variables. In response to this problem, we have 

Bayesian Networks. Bayesian Networks provide a 

way to represent complex probabilistic relationships 

in an intuitive way. However, for reasons that I will 

describe later, there are many issues associated with 

probabilistic inference in Bayesian Networks, 

including computational complexity and mixing rate 

limitations. To combat these issues, many different 

approaches have been developed. 

 

In this paper, I will describe some methods of 

computing and approximating posterior 

probabilities using Bayesian Networks, as well as 

the benefits and caveats of each of these methods. 

For exact inference, I will cover enumeration, 

variable elimination, and clustering. For 

approximate inference, I will cover rejection 

sampling and importance sampling, as well as 

Markov Chain Monte Carlo methods such as Gibbs 

and Metropolis-Hastings sampling. 

 

II.  Bayesian Network Semantics 

 

In this section I will describe the numerical and 

topological semantics of Bayesian Networks, as well 

as some background information on conditional 

independence relationships. 
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A. Topological 

A Bayesian Network is a directed acyclic graph-

based data structure that includes nodes 

corresponding to variables and directed edges 

corresponding to dependence relationships. Each 

node has an associated conditional probability table 

describing its probability given each possible value 

combination of its “parents”, which are all the nodes 

which have an outgoing edge pointed to that node.  

 

An important topological aspect of Bayesian 

Networks is the condition that a node is independent 

of its non-descendants given its parents [1]. 

Therefore, the parents of a node should be all the 

nodes with a direct effect on its probability. 

 

B. Numerical 

A Bayesian Network is only correctly structured if it 

adheres to the following equation, given in [1]: 

 

𝑷(𝑋𝑖  | 𝑋𝑖−1, … , 𝑋1 = 𝑷(𝑋𝑖  | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 
 

where Parents(Xi))  {Xi−1,…,X1}, the last condition 

being satisfied by the nodes being in topological 

order. This equation mathematically reiterates my 

earlier statement that each node is conditionally 

independent of its non-descendants given its parents. 

 

C. Conditional Independence 

Another very important aspect of Bayesian 

Networks is given in [1]: a variable is conditionally 

independent of all other variables in a network given 

its Markov blanket. The Markov blanket includes a 

nodes parents, children, and children’s parents. A 

test used in [1] is to check whether a set of nodes Z 

“d-separates” two sets X and Y. The test is as follows: 

convert all edges to undirected edges, add undirected 

edges between parent nodes that share a child, and 

check if there are any paths between X and Y that do 

not pass through Z. If there are not, then Z d-
separates X and Y, and X is independent of Y given 

Z. 

 

III. Exact Inference 
 

Exact inference in Bayesian Networks is the 

computation of the exact value of a posterior 

distribution of a set of query variables given the 

observed values of some evidence variables. This 

section will describe some of the algorithms that 

accomplish exact inference in Bayesian Networks: 

enumeration and variable elimination. 

 

A. Enumeration 

The simplest algorithm for computing the posterior 

distribution is enumeration, or simply the summing 

of the values from the full joint distribution. This 

computation can be done using the equation from 

[2]: 

 

𝑷(𝑋 | 𝒆)  =  α𝑷(𝑋, 𝒆)  = 𝛼∑𝑷(𝑋, 𝒆, 𝒚)

𝒚

 

where the summation is over all possible values y of 
the unobserved variables. Done naively, this 

computation has complexity O(n2n), but it can be 

reduced to O(2n) by taking advantage of the structure 

of the network and moving some computations 

outside of the summation loop. Nevertheless, this is 

still very computationally inefficient. Many 

computations are calculated multiple times. The next 

method will take advantage of these repeated 

calculations to improve efficiency. 

 

B. Variable Elimination 

Variable elimination is a type of dynamic 

programming algorithm that stores intermediate 

results to avoid repeating computations. To 

understand this algorithm, we will first need to 

understand some terms.  

 

According to [1], a factor is a matrix indexed by the 

values of its argument variables. These matrices are 

used to store conditional probabilities of a value of a 

variable given the value of one or more other 

variables (the arguments).  

 

The pointwise product, represented by “×”, is 

described by [1] as yielding a new factor whose 

variables are the union of the variables of the 

operand, and whose entries are given by the product 

of the corresponding elements of the operands.  

 

The last operation, called “summing out”, involves 

iterating through the values of an argument variable 

and summing the table entries for that variable, thus 

creating a new factor that is no longer dependent on 

that variable. 

 

Using these three operations, here is how the 

algorithm works:  
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1) Variables are ordered “right-to-left”, i.e. 

variables that were on the far right of the 

expression used in enumeration will be 

processed first, while variables that were on the 

left will be processed last. 

2) For each variable in the new variable order, a 

factor is made, using the variable and all the 

observed evidence, and added to the list of 

factors. 

3) If the variable is a hidden variable, i.e. not a 

query variable or evidence variable, sum out all 

the factors. 

4) Once the loop is complete, take the pointwise 

product of all the factors and normalize the 

result. 

While variable elimination does not improve the 

worst-case runtime of exact inference, it performs 

about 1,000 times faster than enumeration when 

reverse topological ordering of variables is used [1]. 

 

C. Special Cases 
For a specific type of tree, called a polytree, in 

which there are one or zero undirected paths between 

any two nodes, time complexity of variable 

elimination is linear in the number of conditional 

probability table entries. However, for multiply 

connected networks, exact inference has exponential 

time and space complexity in the worst case. In fact, 

in [1], it is shown that Bayesian Network exact 

inference is #P-complete, or strictly harder than NP-

complete problems. 

 

IV. Approximate Inference 
 

Approximate inference methods in Bayesian 

Networks estimate the true value of a posterior 

probability distribution. These methods are Monte 

Carlo algorithms, which estimate the answer based 

on samples, and whose accuracy will improve as 

more samples are taken. In this section, I will cover 

rejection sampling and importance sampling, as well 

as some Markov chain-based methods: Gibbs 

sampling and Metropolis-Hastings sampling. 

 

A. Direct Sampling 
The most basic idea of approximation is to take 

samples from a known distribution and calculate 

what proportion of the samples taken satisfy the 

query. We can do this by sampling: 

 

𝑷(𝑋𝑖  | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 

for each variable (in topological order) and storing 

the resulting values of each sample in a vector. If we 

do this many times, we can approximate the 

probability of a given combination of variables by 

taking the number of occurrences of that 

combination and dividing it by the total number of 

samples. 

 

This approach on its own is quite limited, because it 

does not take into account any evidence variables, 

which means we are unable to compute posterior 

probabilities. 

 

B. Rejection Sampling 
Rejection sampling is essentially an extension of 

direct sampling that allows us to estimate 

conditional probabilities given some evidence 

variables. The process of rejection sampling is fairly 

simple. First, we use direct sampling to generate 

some samples, and then we remove all samples that 

don’t match the evidence. We can then divide the 

number of samples that match each value of our 

query variable by the total number of samples that 

match the evidence, and that will give us our 

posterior distribution. The standard deviation of the 

error in probabilities will be proportional to 1/√𝑛, 

where n is the number of samples that matched the 

evidence. This implies that the estimated probability 

will converge to the actual probability as n increases 

to infinity. 

 

The main problem with this approach is how long it 

takes to converge. As the number of evidence 

variables increases, the number of samples that 

match the evidence decreases. In fact, the number of 

accepted samples decreases exponentially with the 

number of evidence variables. For this reason, 

convergence is very slow, and many samples must 

be generated. 

 

C. Importance Sampling 
Importance sampling is based around sampling a 

distribution Q that is not the true distribution 

(because the true distribution is hard to sample) and 

weighting the samples according to some correction 

factor (weight) P(x)/Q(x). The formula for sampling 

from Q and applying the correction factor is this [1]: 

 

𝑃̂(𝒛 | 𝒆) =  
𝑁𝑄(𝒛)

𝑁

𝑃(𝒛 | 𝒆)

𝑄(𝒛)
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≈ 𝑄(𝒛)
𝑃(𝒛 | 𝒆)

𝑄(𝒛)
= 𝑃(𝒛 | 𝒆) 

 

where Z is the nonevidence variables and 𝑁𝑄(𝒛) is 

the number of samples from Q with Z=z. This 

equation shows that the estimate converges to the 

true value regardless of the sampling distribution. 

However, choosing a good sampling distribution 

will result in faster convergence, so we want to 

choose one that is as similar as possible to the true 

distribution. 

 

One common approach is likelihood weighting, 

where the sampling distribution QWS shown below is 

used [1]: 

𝑄𝑊𝑆(𝒛) =  ∏𝑃(𝑧𝑖  | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑍𝑖)

𝑙

𝑖=1

 

 

where Z = {Z1, …, Zl} is the nonevidence variables. 

The general formula for the weight in importance 

sampling is shown below [1]: 

 

𝑤(𝒛) =
𝑃(𝒛 | 𝒆)

𝑄𝑊𝑆(𝒛)
=  𝛼

𝑃(𝒛, 𝒆)

𝑄𝑊𝑆(𝒛)
 

 

Where the normalization constant 𝛼 is 1/P(e) and is 

the same for all samples. Since z and e together are 

all the variables in the network, we can expand this 

equation to [1]: 

𝑤(𝒛) =  𝛼
𝑃(𝒛, 𝒆)

𝑄𝑊𝑆(𝒛)
 

 

=  𝛼
∏ 𝑃(𝑧𝑖  | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑍𝑖)∏ 𝑃(𝑒𝑖  | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐸𝑖)

𝑚
𝑖=1

𝑙
𝑖=1

∏ 𝑃(𝑧𝑖  | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑍𝑖)
𝑙
𝑖=1

 

=  𝛼∏𝑃(𝑒𝑖  | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝐸𝑖)

𝑚

𝑖=1

 

Therefore, the weight is equal to the product of the 

probabilities of the evidence variables given their 

parents. 

 

D. Markov Chains 
The following approximation methods are largely 

based on Markov chains, so I will use this section 

to explain what a Markov chain is. 

 

A Markov chain is a state machine in which state 

transitions are dependent on a probability 

distribution stored in a transition matrix. The 

transition matrix, which I will refer to as k, defines 

the probability of transitioning from one state to 

another. The value k(x→x’) is the probability of 

transitioning from state x to state x’.  The transition 

matrix is a stochastic matrix, in which the 

probabilities in each row add up to one. Intuitively, 

this makes sense, because the row is selected by the 

state currently occupied (x), while the column 

corresponds to the state being transitioned to (x’). 

Markov chains also have a vector x(0) denoting the 

initial state. Markov chains are also memoryless 

because the probability of transitioning to the next 

state is dependent only on the current state; there is 

no memory of previous states retained. 

 

Another term we must define is ergodic; if a 

transition matrix is ergodic, there exists some point 

in time such that, for all pairs of states x, x’ in the 

chain, if the initial state was x, after the time point 

there will always be a probability greater than 0 of 

being in state x’. Basically, every state can be 

reached from every other state, although maybe not 

in a single state transition. 

 

We will also consider a distribution 𝜋𝑡(𝒙), which 

represents the probability of the system being in state 

x at time t. Given this, the system has reached its 

stationary distribution when 𝜋𝑡(𝒙) = 𝜋𝑡+1(𝒙). If 

the transition matrix is ergodic, there is exactly one 

𝜋𝑡(𝒙) that satisfies this condition. 

 

The last Markov chains concept we need to 

introduce is detailed balance. The transition matrix 

is in detailed balance with 𝜋𝑡(𝒙) when [1]: 

 

𝜋(𝒙)𝑘(𝒙 ⟶ 𝒙′) =  𝜋(𝒙′)𝑘(𝒙′ ⟶ 𝒙) 
 

The following methods of approximation are 

Markov Chain Monte Carlo (MCMC) algorithms, 

which means instead of collecting every sample 

from scratch, we will instead generate each new 

sample by making some random change to the 

current sample. 

 

E. Gibbs Sampling 
Gibbs sampling is the first MCMC algorithm we will 

explore. This method starts with a random state and 

then randomly samples a value for a randomly 

chosen nonevidence variable in the network Xi. The 

variable to be sampled is chosen based on a 

probability distribution 𝜌(i). 
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As we know, a variable Xi is independent of all other 

variables given its Markov blanket. Since all other 

variables are fixed, we can say that Xi  is sampled 

conditioned on its Markov blanket. The distribution 

of this is given by [1]: 

 
𝑃(𝑥𝑖  | 𝑚𝑏(𝑥𝑖)) 

=  𝛼𝑃(𝑥𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) ∏ 𝑃(𝑦𝑗  | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑌𝑗))

𝑌𝑗∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑋𝑖)

 

 

This means that each value of 𝑋𝑖  is calculated by the 

product of the probability of its children and the 

probability of 𝑥𝑖 conditioned by its parents. 

 

The most important property of Gibbs sampling is 
that, due to the way states are changed, the stationary 

distribution of the sampling process is equivalent to 

the posterior distribution of the nonevidence 

variables given the evidence [1]. There are three 

cases we need to discuss when considering this claim 

[1]: 

1) The states x and x’ differ in two or more 

variables. In this case, k(x→x’) = 0, because 

Gibbs sampling changes no more than one 

variable at a time. 
 

2) The states differ in exactly one variable Xi that 

changes value from xi to xi’. The probability of 

this is: 
 
k(𝐱→𝐱’) 
= 𝑘((𝑥𝑖 , 𝒙𝒊̅) ⟶ (𝑥𝑖

′, 𝒙𝒊̅)) 

=  𝜌(𝑖)𝑃(𝑥𝑖
′ | 𝒙𝒊̅) 

 
where 𝑿𝒊̅̅ ̅  is all other variables except the 

evidence variables. 

 

3) The states are the same. Any variable could be 

chosen, but the value sampled must be the same 
as before. The probability of this occurrence is: 

 
k(𝐱→𝐱) 

=∑𝜌(𝑖)𝑘((𝑥𝑖 , 𝒙𝒊̅) ⟶ (𝑥𝑖 , 𝒙𝒊̅))

𝑖

 

=∑𝜌(𝑖)𝑃(𝑥𝑖 | 𝒙𝒊)

𝑖

 

 
Gibbs sampling also satisfies detailed balance with 

𝜋 = 𝑃(𝒙 | 𝒆). For the first and third cases above, 

detailed balance is satisfied trivially, so we will only 

look at the second here: 

 

𝜋(𝒙)𝑘(𝒙 ⟶ 𝒙′) 
=  𝑃(𝒙 | 𝒆)𝜌(𝑖)𝑃(𝑥𝑖

′ | 𝒙𝒊̅, 𝐞)
=  𝜌(𝑖)𝑃(𝑥𝑖 , 𝒙𝒊̅ | 𝐞)𝑃(𝑥𝑖

′ | 𝒙𝒊̅, 𝐞)
=  𝜌(𝑖)𝑃(𝑥𝑖 | 𝒙𝒊̅, 𝐞)𝑃(𝒙𝒊̅ | 𝐞)𝑃(𝑥𝑖

′ | 𝒙𝒊̅, 𝐞)
=  𝜌(𝑖)𝑃(𝑥𝑖 | 𝒙𝒊̅, 𝐞)𝑃(𝑥𝑖 ′, 𝒙𝒊̅ | 𝐞) 
=  𝜋(𝒙′)𝑘(𝒙′ ⟶ 𝒙) 
 

Lastly, provided that the conditional probability 

tables do not contain probabilities of 0 or 1, both the 

conditions of ergodicity are met. Therefore, the 

Markov chain will eventually converge to the 

stationary distribution, which is equivalent to the 

true posterior distribution. 

 

One major benefit of Gibbs sampling is that the 

complexity of generating samples is independent of 

network size, and instead is dependent on the 

number of children of Xi and its range [1]. Another 

benefit is that it will outperform likelihood 

weighting when evidence is downstream, because 

the evidence variables remain fixed and will be 

considered even if they are downstream. 

 

Gibbs sampling can encounter limitations, however, 

in certain network structures. There are certain cases 

in which not all variables can be reached by only 

changing one variable at a time. In this case, Gibbs 

sampling may never converge to the true posterior 

distribution. Similarly, there may be cases in which 

all states can be reached by Gibbs sampling, but the 

probability of crossing certain boundaries is very 

low, hindering the mixing rate, or rate of 

convergence. Block sampling, sampling multiple 

variables simultaneously, can help solve this 

problem. Metropolis-Hastings sampling,  in the next 

section, also provides a solution. 

 

F. Metropolis-Hastings Sampling 
Metropolis-Hastings, similar to Gibbs sampling, 

operates with the goal of converging to 𝜋 in order to 

sample the true posterior distribution. However, 

there are a few key differences. 

Metropolis-Hastings has a two-step sampling 

process. First, a new state x’ is sampled from a 

proposal distribution q(x’ | x). Next, the proposed 

state is accepted based on an acceptance 

probability [1]: 
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 𝑎(𝒙′| 𝒙) = min (1,
𝜋(𝒙′)𝑞(𝒙 | 𝒙′)

𝜋(𝒙)𝑞(𝒙′| 𝒙)
) 

 

If the proposal is rejected, the state remains at x. 

Besides the added acceptance probability, 

Metropolis-Hastings also has more flexibility in its 

proposal distribution. For example, the proposal 

distribution may include a small probability of 

generating a new state from scratch using 

importance sampling. This type of proposal 

distribution offers a solution to the mixing rate 

limitations of Gibbs sampling, but still maintains the 

benefits of the Markov chain-based methodology. 
 

An important piece of Metropolis-Hastings is that it 

is guaranteed to converge to the correct stationary 

distribution, given that the transition kernel is 

ergodic [1]. To prove this, we will once again only 

focus on the case where x transitions to x’, as the 

other two cases are trivial. The probability of this 

transition is [1]: 

 

𝑘(𝒙 → 𝒙′) = 𝑞(𝒙′| 𝒙)𝑎(𝒙′| 𝒙) 
 

To prove detailed balance, we show that: 

 

𝜋(𝒙)𝑞(𝒙′| 𝒙)𝑎(𝒙′| 𝒙)

=  𝜋(𝒙)𝑞(𝒙′| 𝒙)min (1,
𝜋(𝒙′)𝑞(𝒙 | 𝒙′)

𝜋(𝒙)𝑞(𝒙′| 𝒙)
) 

=  min (𝜋(𝒙)𝑞(𝒙′| 𝒙), 𝜋(𝒙′)𝑞(𝒙 | 𝒙′)) 

=  𝜋(𝒙′)𝑞(𝒙 | 𝒙′)min ( 
𝜋(𝒙)𝑞(𝒙′| 𝒙)

𝜋(𝒙′)𝑞(𝒙 | 𝒙′)
, 1) 

=  𝜋(𝒙′)𝑞(𝒙 | 𝒙′)𝑎(𝒙 | 𝒙′) 
 

A notable property of Metropolis-Hastings is the 

presence of  𝜋(𝒙′)/𝜋(𝒙)  in the acceptance 

probability, meaning that if a proposed state is more 

likely than the current state, it will be accepted. In 

[3], Tierney highlights that Hastings [4] and Barker 

[6] explored alternative forms of the acceptance 

probability, but Peskun [5] later showed that this 

form is optimal, mostly due to it being less likely to 

reject candidate states. 

 

Tierney [3] also describes some examples of kernels 

that can be used in Metropolis-Hastings for 

estimating posterior distributions, which I will 

describe below. 

 

 

 

G. Random Walk Chains 
Random walk chains feature a proposal distribution 

q that samples Z from a density f of a Lebesgue 

measure 𝑬 =  ℝ𝑘, μ and then generates the new 

state x’ by adding Z to the current state x [3]. Thus, 

we will have the new state x’ = x + Z. Intuitively, 

this means the new state x’ will be a step in some 

random direction in k-dimensional space, sampled 

from E. Common distributions that Z may be 

drawn from include a uniform distribution on a 

disk, a normal distribution, or a multivariate t 

distribution. The step size can be defined by a 

constant c, which Tierney suggests could 

reasonably be 1 or ½, and Graves [7] offers an 

automated solution to. 

 

H. Independence Chains 
Independence chains use a proposal distribution 

that samples candidate states from a fixed density f. 
In other words, q(x’ | x) = f(x’). The acceptance 

probability 𝑎(𝒙′| 𝒙) is written as [3]: 

 

𝑎(𝒙′| 𝒙)  = min (1,
𝑤(𝑦)

𝑤(𝑥)
) 

 

This method is very similar to importance sampling 

because candidate states with low weights are less 

likely to be accepted, while those with high weights 

are likely to be accepted; the process will often 

remain in these states for multiple steps at a time. If 

a state has too high a weight value, the process may 

stay there for too long, so it is important to choose 

an f that is as close to constant as possible. When f 
is constant, candidate states are never rejected, and 

the samples are drawn from  [3].  

 

I. Rejection Sampling Chains 
As a special case of independence chains, we can 

use rejection sampling to sample from f [3]. To 

accomplish this, we use a density function h and 

constant c such that 𝜋(𝒙) ≤ 𝑐ℎ(𝒙) for all x, i.e. 𝑐ℎ 

“dominates” f for all x. However, it is difficult to 

choose c that is large enough to dominate f without 

making it so large that the algorithm is inefficient. 

Fortunately, the rejection scheme provides a 

solution. We can define the acceptance probability 

as: 
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𝑎(𝒙′|𝒙) =

{
 
 

 
 

1, 𝒙 ∈ 𝐶
𝑐ℎ(𝒙)

𝜋(𝒙)
, 𝒙 ∉ 𝐶, 𝒙′ ∈ 𝐶

min(1,
𝜋(𝒙′)ℎ(𝒙)

𝜋(𝒙)ℎ(𝒙′)
) , 𝒙 ∉ 𝐶, 𝒙′ ∉ 𝐶

 

 

where C = {x: 𝜋(𝒙)  ≤ 𝑐ℎ(𝒙)}. With this acceptance 

probability, candidate states will occasionally be 

rejected when 𝒙 ∉ 𝐶, compensating for the deficiency 

at x.  

 

J. Autoregressive Chains 
Autoregressive chains are a sort of hybrid between 
random walks and independence chains. In this 

method, we generate new states by [3]: 

𝒙’ =  𝑎 +  𝑏(𝒙 –  𝑎)  +  𝒁 

where a is a fixed vector and b is a real constant or 

fixed k  k matrix. If b = 1, this reduces to the random 

walk kernel. If a = 0 and b = 0, it reduces to an 

independence kernel. If 0 < b < 1, the current state is 

shrunk toward a before the increment Z is added. If 

b = -1, the current state is reflected about a before 

the increment Z is added [3]. 

 

V. Conclusion 
 
Bayesian Networks offer an elegant representation of 

uncertain domains. However, performing 

probabilistic inference in these networks is still very 

expensive, requiring us to be clever in how we 

compute our posterior distribution. There are a 

multitude of methods available for solving this 

problem, only a few of which I have listed in this 

paper. As we have seen, each method has its own 

strengths and weaknesses. 

 

Enumeration and variable elimination can give us 

the exact value of the posterior distribution, but in 

many cases are not practical due to their large 

computational expense. 

 

Rejection sampling often fails due to the challenge 

of obtaining samples that match the evidence, but 

importance sampling improves upon this by instead 

weighting samples based on their usefulness. 

 

Markov Chain Monte Carlo methods are likely the 

most applicable. Gibbs sampling improves upon 

importance sampling by including downstream 

evidence in calculations. Metropolis-Hastings 

improves upon Gibbs by allowing great flexibility in 

the choice of kernel, opening the door to methods 

that improve the mixing rate significantly. This 

flexibility of Metropolis-Hastings is demonstrated in 

the later sections describing random walks, 

independence chains, rejection sampling chains, and 

autoregressive chains.  

 

Many challenges in the area of probabilistic 

inference, of course, remain open, but these methods 

are a foundation for many other methods that have 

and will continue to be developed to solve these 

problems. 
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